Energy-efficient management of virtual machines in data centers for cloud computing
نویسنده
چکیده
Cloud computing has revolutionized the information technology industry by enabling elastic on-demand provisioning of computing resources. The proliferation of Cloud computing has resulted in the establishment of large-scale data centers around the world containing thousands of compute nodes. However, Cloud data centers consume enormous amounts of electrical energy resulting in high operating costs and carbon dioxide emissions. In 2010, energy consumption by data centers worldwide was estimated to be between 1.1% and 1.5% of the global electricity use and is expected to grow further. This thesis presents novel techniques, models, algorithms, and software for distributed dynamic consolidation of Virtual Machines (VMs) in Cloud data centers. The goal is to improve the utilization of computing resources and reduce energy consumption under workload independent quality of service constraints. Dynamic VM consolidation leverages fine-grained fluctuations in the application workloads and continuously reallocates VMs using live migration to minimize the number of active physical nodes. Energy consumption is reduced by dynamically deactivating and reactivating physical nodes to meet the current resource demand. The proposed approach is distributed, scalable, and efficient in managing the energy-performance trade-off. The key contributions are: 1. Competitive analysis of dynamic VM consolidation algorithms and proofs of the competitive ratios of optimal online deterministic algorithms for the formulated single VM migration and dynamic VM consolidation problems. 2. A distributed approach to energy-efficient dynamic VM consolidation and several novel heuristics following the proposed approach, which lead to a significant reduction in energy consumption with a limited performance impact, as evaluated by a simulation study using real workload traces. 3. An optimal offline algorithm for the host overload detection problem, as well as a novel Markov chain model that allows a derivation of an optimal randomized control policy under an explicitly specified QoS goal for any known stationary workload and a given state configuration in the online setting. 4. A heuristically adapted host overload detection algorithm for handling unknown non-stationary workloads. The algorithm leads to approximately 88% of the mean inter-migration time produced by the optimal offline algorithm. 5. An open source implementation of a software framework for distributed dynamic VM consolidation called OpenStack Neat. The framework can be applied in both further research on dynamic VM consolidation, and real OpenStack Cloud deployments to improve the utilization of resources and reduce energy consumption.
منابع مشابه
A Genetic Based Resource Management Algorithm Considering Energy Efficiency in Cloud Computing Systems
Cloud computing is a result of the continuing progress made in the areas of hardware, technologies related to the Internet, distributed computing and automated management. The Increasing demand has led to an increase in services resulting in the establishment of large-scale computing and data centers, in addition to high operating costs and huge amounts of electrical power consumption. Insuffic...
متن کاملCommunication-Aware Traffic Stream Optimization for Virtual Machine Placement in Cloud Datacenters with VL2 Topology
By pervasiveness of cloud computing, a colossal amount of applications from gigantic organizations increasingly tend to rely on cloud services. These demands caused a great number of applications in form of couple of virtual machines (VMs) requests to be executed on data centers’ servers. Some of applications are as big as not possible to be processed upon a single VM. Also, there exists severa...
متن کاملEnergy Aware Resource Management of Cloud Data Centers
Cloud Computing, the long-held dream of computing as a utility, has the potential to transform a large part of the IT industry, making software even more attractive as a service and shaping the way IT hardware is designed and purchased. Virtualization technology forms a key concept for new cloud computing architectures. The data centers are used to provide cloud services burdening a significant...
متن کاملIntegrated modeling and solving the resource allocation problem and task scheduling in the cloud computing environment
Cloud computing is considered to be a new service provider technology for users and businesses. However, the cloud environment is facing a number of challenges. Resource allocation in a way that is optimum for users and cloud providers is difficult because of lack of data sharing between them. On the other hand, job scheduling is a basic issue and at the same time a big challenge in reaching hi...
متن کاملA Near Optimal Approach in Choosing The Appropriate Physical Machines for Live Virtual Machines Migration in Cloud Computing
Migration of Virtual Machine (VM) is a critical challenge in cloud computing. The process to move VMs or applications from one Physical Machine (PM) to another is known as VM migration. In VM migration several issues should be considered. One of the major issues in VM migration problem is selecting an appropriate PM as a destination for a migrating VM. To face this issue, several approaches are...
متن کاملTask Scheduling Algorithm Using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in Cloud Computing
The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013